Removal of Lead from Aqueous Solutions by Polyacrylic Acid-Bentonite Composite: Batch and Column Studies
Authors
Abstract:
Shortage of water resources and deterioration of water quality have urged the need to develop new technologies for the removal of contaminants from water. Heavy metals produced by municipal and industrial activities are among the most toxic contaminants present in the natural and waste waters. Different methods have been developed for the elimination of heavy metals from water resources and industrial waste waters. Adsorption is an effective and economic method for the water purification purposes. Nowadays, clays and natural polymers have been widely used as the adsorbents for heavy metals, due to their eco-friendly nature, natural abundance, low cost and high specific surface area. If these adsorbents are used as a hybrid material, some of their physical and chemical restrictions would be alleviated. In this study, polyacrylic acid–bentonite hybrids and natural bentonite were compared in terms of Pb adsorption in the batch and fixed-bed column systems. Besides, the effect of pH on Pb retention was investigated in both systems. The results of the batch studies showed that Langmuir and Freundlich isotherm models were appropriate in ing quilibrium Pb sorption data. Pb sorption by the sorbents was increased with the rise in solution of pH from 4 to 6, showing the greatest Pb sorption capacity at pH values of 4 (83.29 mg g-1) and 6 (103.3 mg g-1). Different indices of filtration and adsorption, including average relative effluent concentration, relative adsorption index, relative transmitted index, and filtration coefficient, were calculated from the break-through curves, indicating that the polyacrylic acid-bentonite nanocomposite was superior in the Pb sorbtion, as compared to bentonite. Also, a higher pH value resulted in the greater Pb removal from the solutions.
similar resources
Application of modified bentonite using sulfuric acid for the removal of hexavalent chromium from aqueous solutions
Background: Environmental contamination by chromium (Cr) has become an important issue due to its adverse effects on human health and environment. This study was done to evaluate the application of modified bentonite using sulfuric acid as an adsorbent in the removal of hexavalent Cr from aqueous solution. Methods: Adsorbent features were determined using x-ray diffraction (XRD), fourier transf...
full textAdsorptive removal of Cr(VI) from aqueous solutions by cross-linked chitosan/bentonite composite
−Cross-linked chitosan/bentonite composite (CCB) was prepared, and characterized by Fourier transform infrared (FTIR) spectroscopy, BET surface area and pore diameter analyses, X-ray diffraction (XRD) patterns and thermal gravimetric analyses (TGA). The adsorption of hexavalent chromium Cr(VI) onto CCB as a function of adsorbent dosage, initial Cr(VI) concentration, solution pH, and contact tim...
full textPhysical Chemistry Studies of Acid Dye Removal from Aqueous Media by Mesoporous Nano Composite: Adsorption Isotherm, Kinetic and Thermodynamic Studies
In this research, SBA-15/Polypyrrole (SBA-15/PPy) mesoporous nanocomposite was synthesized, characterized and applied for Acid Blue 62 (AB62) adsorption as a textile dye from aqueous solution. In order to evaluate the structural properties of synthesized adsorbent, FT-IR, FESEM and TEM images, XRD, and BET techniques were applied. Some parameters such as pH, dosage, and time which affect the ba...
full textHumic acid removal from aqueous solutions by peroxi-electrocoagulation process
Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs) and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP) was investigated for the removal of humic acids (HAs) from aqueous solutions. Methods: PEP was carried out for the remov...
full textRemoval of Lead Ions from Aqueous Solution by Sorptive-Flotation Using Limestone and Oleic Acid
A simple, rapid and economic procedure was presented to remove lead(II) from aqueous solution under the optimized conditions. It is based on the sorption of Pb2+ ions from aqueous solutions onto limestone fines (LS), which is an inexpensive and widespread over the globe, followed by flotation with oleic acid (HOL) surfactant. The different parameters (namely: solution pH, sorbent...
full textRemoval of Cerium from Aqueous Solutions by Amino Phosphate Modified Nano TiO2: Kinetic, and Equilibrium Studies
Adsorption of Ce(III) from aqueous solution by amino phosphate modified nano TiO2 was investigated. Effects of pH of solution, adsorbent dose, contact time, initial metal concentration and temperature were examined. Experimental data were fitted well by the pseudo second order model. Adsorption was well described by Freundlich isotherm model with a maximum adsorption capacity of 25 mg g-1. Acco...
full textMy Resources
Journal title
volume 24 issue 1
pages 1- 12
publication date 2020-05
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023